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Abstract

For parameters of single and multiple threshold autoregressive models of order one, sequential
procedures are proposed for constructing 'xed size con'dence ellipsoids. Sequential procedures
are also proposed for constructing 'xed proportional accuracy con'dence ellipsoids and 'xed
width con'dence intervals for linear combination of parameters. The con'dence ellipsoids and
intervals are shown to be asymptotically consistent and the associated stopping rules are shown
to be asymptotically e4cient as the size=width of the region becomes small. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

It is well documented in the literature that sequential sampling methods provide
a useful way of constructing con'dence intervals=regions (for parameters) with 'xed
size and prescribed coverage probability. In a seminal paper, Chow and Robbins (1965)
proposed a recipe for constructing a sequential 'xed width con'dence interval for an
unknown mean with prescribed probability. Their ideas have been used to develop
sequential 'xed size con'dence regions for higher dimensional cases and regression
models; see, for example, Gleser (1965), Albert (1966), Srivastava (1967, 1971) and
Finster (1985). More recently, sequential con'dence regions based on maximum likeli-
hood estimators have been constructed by other authors, for example, Grambsch (1983,
1989), Yu (1989) and Chang and Martinsek (1992). Grambsch (1989) and Chang and
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Martinsek (1992) construct sequential 'xed size con'dence regions for parameters of
a logistic regression model using diHerent stopping rules.
For over a decade or so, there has been a steadily growing interest in using se-

quential methods to estimate parameters in linear time-series models. See for ex-
ample, Lai and Siegmund (1983), Sriram (1987, 1988), Greenwood and Shiryaev
(1992), Fakhre-Zakeri and Lee (1992, 1993) and Lee (1994). There are many sit-
uations, however, where one would not expect linear time-series models to be the best
class of models to 't a real data set, although one may tacitly assume that the lin-
ear time-series model under consideration provides a close approximation to physical
reality.
One class of non-linear time-series models which is generally agreed to be useful

is the class of threshold autoregressive (TAR) models introduced by Tong (1978)
and discussed extensively in Tong and Lim (1980). Recently, Lee and Sriram (1999)
considered the problem of sequential point estimation of the parameters in a TAR(1)
model where they studied the 'rst-order properties of the risk of sequential procedures
involved.
In this paper, we, once again, consider a TAR(1) model de'ned by

Xi = �1X+i−1 + �2X−
i−1 + �i; i = 1; 2; : : : ; (1.1)

where the real parameters �1 and �2 are not necessarily equal, {�i} is a sequence
of independent and identically distributed (i.i.d.) random variables (r.v.’s), and x+ =
max(x; 0) and x− = min(x; 0) for a real number x. The distribution of error �1 is
unspeci'ed but it is assumed throughout that E�1 = 0¡E�21 = �2¡∞, where �2 is an
unknown constant.
Our aim here, however, is to construct a su4ciently precise con'dence ellipsoid

for � = (�1; �2)′ in the two-dimensional Euclidean space. That is, we wish to con-
struct an ellipsoidal region Rn such that the length of the major axis is equal to
2d(d¿ 0), and such that the coverage probability, P(�∈Rn), is approximately equal
to 1− � (0¡�¡ 1) for su4ciently small values of d.
It has been shown by Petruccelli and Woolford (1984) that the process {Xi; i¿0}

de'ned in (1.1) is ergodic if and only if

�∈�= {(�1; �2)′: �1¡ 1; �2¡ 1 and �1�2¡ 1}: (1.2)

This implies the existence of an invariant probability distribution for {Xi}. Chan
et al. (1985) have extended the above-mentioned result of Petruccelli and Woolford to
a multiple-threshold AR(1) model. Furthermore, Chan et al. (1985) have shown that
E|�1|k ¡∞ for some integer k¿1 implies that the invariant probability distribution
for the chain {Xi} has 'nite kth moment for each �∈�; see Chan et al. (1985),
Theorem 2:3 and the remark following it. In what follows we shall assume that X0
has as its distribution �(·), the invariant probability distribution for {Xi}, so that the
process is strictly stationary. Also, we will denote (X±

0 )
k and (X±

i )
k by X±k

0 and X±k
i ,

respectively, for k¿1.
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Suppose we estimate the parameters �1 and �2 in (1.1) by their least-squares
estimators

�̂1; n =
n∑

i=1
XiX+i−1

/
n∑

i=1
X+2i−1 (1.3)

and

�̂2; n =
n∑

i=1
XiX−

i−1

/
n∑

i=1
X−2
i−1 : (1.4)

Then the corresponding estimator of �2 is �̂2n = n−1
∑n

i=1 (Xi − �̂1; nX+i−1 − �̂2; nX−
i−1)

2.
Note that the estimators de'ned above are also the maximum likelihood estimators for
�1; �2 and �2, respectively, under the assumption of normal error distribution.
It is shown in Petruccelli and Woolford (1984) that if �∈� de'ned in (1.2), then

the estimators �̂1; n; �̂2; n and �̂2n are strongly consistent for �1; �2 and �2, respectively.
Furthermore, if �∈�, then it can be concluded using the result n−1

∑n
i=1 X

±2
i−1→EX±2

0
almost surely (a.s.) as n→∞ (follows from ergodicity) and Theorem 3.2 of Petruccelli
and Woolford (1984) that for �n=diag(

∑n
i=1 X

+2
i−1;

∑n
i=1 X

−2
i−1), a diagonal matrix, and

�̂n = (�̂1; n; �̂2; n)′ we have

�−2(�̂n − �)′�n(�̂n − �) D→ �22 as n→∞; (1.5)

where �22 is a �2 random variable with two degrees of freedom. Now, for any d¿ 0,
let

Rn = {z: (z − �̂n)′�n(z − �̂n)6d2�min(�n)}; (1.6)

where �min(�n) = min(
∑n

i=1 X
+2
i−1;

∑n
i=1 X

−2
i−1) is the smallest eigenvalue of �n de'ned

above. Then, Rn de'nes an ellipsoid with length of the major axis equal to 2d and it
is in this sense that the size of the ellipsoid is 'xed. Moreover, for any �∈ (0; 1) and
n0(d) determined by

n0(d) = smallest integer¿�2a2=[d2 min(EX+20 ; EX−2
0 )]; (1.7)

where a2 satis'es P[�226a2] = 1− �, we have from (1.5) that for �∈�

lim
d→ 0

P(�∈Rn0(d)) = 1− �: (1.8)

The result in (1.8) shows that, for small values of d, the sample size n0(d) yields
an ellipsoidal con'dence region of 'xed size and prespeci'ed coverage probability.
However, the sample size n0(d) cannot be used in practice because it depends on the
unknown parameters. To over come this, we de'ne a stopping rule

Td = inf{n¿m: �min(�n)¿�̂2na
2=d2}; (1.9)

where �min(�n) is as de'ned in (1.6), �̂
2
n is de'ned as above and m(¿2) is the initial

sample size. The stopping rule in (1.9) is somewhat similar to the one de'ned in Chang
and Martinsek (1992). The con'dence ellipsoid RTd has length of the major axis equal
to 2d. Moreover, we have the following theorems.
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Theorem 1.1. Suppose �∈� de5ned in (1:2). Then; for the stopping rule Td de5ned
in (1:9) the following hold:

(i) for each d¿ 0; Td ¡∞ a:s: and Td →∞ a:s: as d→ 0; (1.10)

(ii) Td=n0(d)→ 1 a:s: as d→ 0; (1.11)

where n0(d) is as in (1:7); and

(iii) lim
d→ 0

P[�∈RTd ] = 1− � (asymptotic consistency): (1.12)

Theorem 1.2 (Asymptotic e4ciency). Assume that �∈� and E|�1|2p+�¡∞ for p¿2
and some �¿ 0. Then; for Td and n0(d) de5ned in (1:9) and (1:7); respectively; the
following hold:

(i) {Td=n0(d); 0¡d¡ 1} uniformly integrable (1.13)

and

(ii) lim
d→ 0

E(Td=n0(d)) = 1: (1.14)

The stopping rule de'ned in (1.9) is very diHerent from the one de'ned in Lee and
Sriram (1999) for the sequential point estimation of �. The diHerence is essentially
due to the presence of r.v. �min(�n) in (1.9) in place of n that appears in Lee and
Sriram’s rule. This necessitates obtaining rate of convergence of n−1�min(�n) to its
limit in probability. This rate of convergence result is of independent interest and is
given in a Lemma in Section 2. This result is crucial to prove (1.13) and (1.14).
The theorems stated above are proved in Section 2. In Section 3, we construct 'xed

proportional accuracy con'dence ellipsoids for � and 'xed width con'dence intervals
for a linear combination of �. In Section 4, the results stated above are extended to a
multiple-threshold AR(1) model. We end this section with some notations which will
be used throughout the rest of the paper. Let

�̂n = �min(�n) = min
(

n∑
i=1

X+2i−1;
n∑

i=1
X−2
i−1

)
and �=min(EX+20 ; EX−2

0 ):

(1.15)

2. Proofs

Proof of Theorem 1.1. Since n−1
∑n

i=1 X
±2
i−1→EX±2

0 a.s. as n→∞ it follows from
(1.15) that

n−1�̂n → � a:s: as n→∞: (2.1)

This, the result �̂2n → �2 a.s. and routine arguments yield (1.10) and (1.11).
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Assertion (1:12) follows from (1.5), (1.11) and the Anscombe’s theorem (see, for
instance, Woodroofe, 1982, Theorem 1:4) because the sequence

{�−2(�̂n − �)′�n(�̂n − �); n¿1} is uniformly continuous in probability (u:c:i:p:):

(2.2)

The result in (2.2) follows from Lemma 3:1, display (2.2) of Lee and Sriram (1999).

Lemma. Assume that �∈� de5ned in (1:2). If E|�1|2p+� ¡∞ for p¿ 2 and some
�¿ 0; then for any  ¿ 0

(i) P
{∣∣∣∣n−1

n∑
i=1

X±2
i−1 − EX±2

0

∣∣∣∣ ¿ 
}
=O(n−p=2) (2.3)

and hence

(ii) P{|n−1�̂n − �|¿ }=O(n−p=2) (2.4)

as n→∞; where �̂n and � are as de5ned in (1.15).

Proof. It is shown below that the result in (2.3) follows from a result on moment
bounds for stationary, strong mixing sequences which is due to Yokoyama (1980). To
this end, 'rst observe that if �∈�, then {Xi; i¿0} is geometrically ergodic (see Chan
et al., 1985, Theorem 2:3). From this, Theorem 2:1 and Remark 2:2 of Nummelin
and Tuominen (1982), and results in Doukhan (1994, p. 88, display (1′)) it follows
that {Xi; i¿0} is (geometrically) !-mixing with mixing coe4cient !n = O("n) for
some 0¡"¡ 1. Since !-mixing implies strong mixing (or, equivalently, �-mixing,
see Doukhan, 1994, pp. 3, 4 and 20) we have that the �-mixing coe4cient �n=O("n).
This implies that condition (3.1) of Theorem 1 in Yokoyama (1980) is satis'ed. Now,
let Sn =

∑n
i=1 (X

+2
i−1 − EX+2). By the moment assumption (also see (1.2)) and an

application of Theorem 1 of Yokoyama (1980) we have that there exists a constant
M ¿ 0 such that

E|Sn|p6Mnp=2; n¿1: (2.5)

For the sequence {X+2i }, the result in (2.3) now follows from the Markov inequality
and (2.5). Similarly, the result in (2.3) holds for the sequence {X−2

i }.
As for (2.4), the algebraic identity min(a; b)= {a+ b−|a− b|}=2 and the inequality

||x| − |y||6|x − y| imply that

|n−1�̂n − �|6
∣∣∣∣n−1

n∑
i=1

X+2i−1 − EX+2
∣∣∣∣+

∣∣∣∣n−1
n∑

i=1
X−2
i−1 − EX−2

∣∣∣∣ : (2.6)

The result in (2.4) now follows from (2.6) and (2.3). Hence the lemma.

Proof of Theorem 1.2. De'ne another stopping rule T̃ d by

T̃ d = inf
{
n¿m: �̂n¿d−2a2

(
n−1

n∑
i=1

�2i

)}
; (2.7)
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where �̂n is as in (1.15). Since �̂1; n and �̂2; n in (1.3) and (1.4) are least-squares
estimators of �1 and �2, respectively, we have that �̂

2
n6n−1

∑n
i=1 �

2
i , where �̂2n is as

de'ned in Section 1. From this and (1.9) it follows that

Td6T̃ d: (2.8)

Now, let Kd=[d−2a2(�2=�)(1+  )]+1 for some  ¿ 0 and � de'ned in (1.15). Then,
for k¿Kd and some (¿ 0 it can be shown that

P[T̃ d ¿k]6 P
{∣∣∣∣

[(
k−1

k∑
i=1

�2i

)/
(k−1�̂k)

]
− (�2=�)

∣∣∣∣¿(
}

= O(k−p=2); (2.9)

where the last step follows from (2.4), the result P{|k−1∑k
i=1 �

2
i −�2|¿ }=O(k−p=2)

which follows from Corollary 10:3:2 of Chow and Teicher (1978), and an application
of Lemma 1 of Sriram (1987). Now, (2.9) implies that

∑
k¿1 P(T̃ d ¿k)¡∞. From

this and arguments as of Woodroofe (1982, display (4:9), p. 47) it follows that

{d2T̃ d; 0¡d¡ 1} is uniformly integrable: (2.10)

Hence, the assertion in (1.13) follows from (2.8),(2.10) and the de'nition of n0(d) in
(1.7). The assertion in (1.14) follows from (1.11) and (1.13). Hence the theorem.

3. Related �xed size con�dence regions

3.1. Fixed proportional accuracy con5dence ellipsoids

Suppose �1 and �2 in (1.1) are nonzero but at least one of the parameter values is
near the origin. Then, one may wish to take this into account and construct a smaller
con'dence ellipsoid for � which gives us an improvement in accuracy of estimates of
small coordinates. One approach (see Chang and Martinsek, 1992; Martinsek, 1995, for
instance) is to construct an ellipsoidal region such that the statistical distance between
�̂n and � is less than a certain fraction of the true value of �(1) = min(|�1|; |�2|). This
yields the following ellipsoidal region:

En = {z: (z − �̂n)′�n(z − �̂n)6d2�min(�n)�̂(1); n} (3.1)

for d¿ 0, where �̂(1); n = min(|�̂1; n|; |�̂2; n|) with �̂1; n and �̂2; n as de'ned in (1.3) and
(1.4), respectively, and �min(�n) is as in (1.6). En de'nes an ellipsoid with length of

the major axis equal to 2d
√
�̂(1); n.

Now, for � de'ned in (1.15), �(1) = min(|�1|; |�2|) and a2 as in (1.7), de'ne an
(unknown) sample size

t0(d) = smallest integer¿�2a2=[d2�(1)�]: (3.2)

Once again, as in (1.8), for any �∈ (0; 1) and the sample size determined by (3.2), if
�∈� de'ned in (1.2) then we have from (1.5) that

lim
d→ 0

P(�∈Et0(d)) = 1− �: (3.3)
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However, the sample size t0(d) cannot be used in practice since it depends on the
unknown parameters. Therefore, as in (1.9), de'ne a stopping rule

Nd = inf{n¿m: �̂n�̂(1); n¿�̂2na
2=d2}; (3.4)

where �̂n is as in (1.15), �̂(1); n is as de'ned in (3.1), �̂
2
n is as de'ned in Section 1,

and m is an initial sample size. We then have the following theorem.

Theorem 3.1. Suppose �∈� de5ned in (1:2). Then; for the stopping rule Nd de5ned
in (3:4) the following hold:

(i) for each d¿ 0; Nd ¡∞ a:s: and Nd →∞ a:s: as d→ 0; (3.5)

(ii) Nd=t0(d)→ 1 a:s: as d→ 0; (3.6)

where t0(d) is as in (3:2) and

(iii) lim
d→ 0

P[�∈ENd ] = 1− �: (3.7)

Furthermore; under the conditions of Theorem 1:2

(iv) {Nd=t0(d); 0¡d¡ 1} is uniformly integrable; (3.8)

and

(v) lim
d→ 0

E[Nd=t0(d)] = 1: (3.9)

Proof of Theorem 3.1. The assertions in (3.5)–(3.7) can be proved using arguments
similar to those in the Proof of Theorem 1.1. As for (3.8), de'ne another stopping rule
Ñ d by

Ñ d = inf
{
n¿m : �̂n�̂(1); n¿d−2a2

(
n−1

n∑
i=1

�2i

)}
: (3.10)

Once again, as in (2.8) and (2.10), Nd6Ñ d and it su4ces to establish the result in
(3.8) for Ñ d in place of Nd.
To this end, 'rst we obtain the rate of convergence (in probability) of �̂1; n and �̂2; n

(see (1.3) and (1.4)) to their limits �1 and �2, respectively. Write

�̂1; n − �1 = n−1
n∑

i=1
X+i−1 Xi

/(
n−1

n∑
i=1

X+2i−1

)
− (�1EX+20 =EX+20 ): (3.11)

Now,

n−1
n∑

i=1
X+i−1Xi − �1EX+20 = n−1

n∑
i=1

X+i−1�i + �1

[
n−1

n∑
i=1
(X+2i−1 − EX+20 )

]
:

(3.12)

Since E|�1|2p ¡∞ for p¿ 2, by a result of Sriram (1988, Lemma 1, p. 58) and the
Markov inequality we have that

P
{∣∣∣∣n−1

n∑
i=1

X+i−1�i

∣∣∣∣ ¿ =2
}
=O(n−p=2) as n→∞ (3.13)
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for some  ¿ 0. Therefore, from (3.12) and (2.3) we have that

P
{∣∣∣∣n−1

n∑
i=1

X+i−1Xi − �1EX+2
∣∣∣∣ ¿ 

}
=O(n−p=2) as n→∞: (3.14)

Hence, the result

P{|�̂1; n − �1|¿ }=O(n−p=2) as n→∞ (3.15)

follows from (3.11), (3.14), (2.6) and Lemma 1 of Sriram (1987). Similarly, it can be
shown that

P{|�̂2; n − �2|¿ }=O(n−p=2) as n→∞: (3.16)

Now, in order to establish the uniform integrability of {d2Ñ d; 0¡d¡ 1}, let
K̃d = [d−2a2{�2=(��(1))}(1 +  )] + 1 for some  ¿ 0, use (3.15), (3.16) and (2.4),
and argue as in (2.9) to (2.10). The assertion in (3.8) now follows. The assertion in
(3.9) follows from (3.6) and (3.8). Hence the theorem.

3.2. Con5dence interval for a linear combination of �

In addition to constructing a 'xed size con'dence region for the vector �, often it
is also of interest to construct a 'xed width con'dence interval for a particular linear
combination c′� for some known c = (c1; c2)′ 	= 0. In fact, in this context, it would
be of special interest to construct a 'xed width con'dence interval for �1− �2 since it
would help diHerentiate between an AR(1) model (the case �1 = �2) and the threshold
model in (1.1).
It follows from Theorem 3.2 of Petruccelli and Woolford (1984) that if �∈� (see

(1.2)) then for �̂n de'ned in (1.5)
√
n(c′�̂n − c′�) D→ N (0; 02) as n→∞; (3.17)

where 02 = �2[(c21=EX
+2)+ (c22=EX

−2)]. If 02 were known, then for �∈ (0; 1) and the
sample size determined by

k0(d) = smallest integer¿z2�=20
2=d2; (3.18)

we have from (3.17) that

lim
d→ 0

P(c′�∈ [c′�̂k0(d) − d; c′�̂k0(d) + d]) = 1− �;

where z�=2 satis'es 2(z�=2) − 2(−z�=2) = 1 − �. However, since 02 is unknown, the
sample size k0(d) cannot be used. As before, Eq. (3.18) suggests the stopping rule

3d = inf{n¿m: n¿d−2z2�=20̂
2
n}; (3.19)

where m is an initial sample size and

0̂
2
n = �̂2n

[
c21

(
n
/

n∑
i=1

X+2i−1

)
+ c22

(
n
/

n∑
i=1

X−2
i−1

)]
: (3.20)

We then have the following theorem.
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Theorem 3.2. Suppose �∈� de5ned in (1:2). Then the following hold for the stopping
rule 3d and k0(d) de5ned in (3:19) and (3:18); respectively:

(i) for each d¿ 0; 3d ¡∞ a:s: and 3d →∞ a:s: as d→ 0; (3.21)

(ii) 3d=k0(d)→ 1 a:s: as d→ 0 (3.22)

and

(iii) lim
d→ 0

P{c′�∈ [c′�̂3d − d; c′�̂3d + d]}= 1− �: (3.23)

Furthermore; under the conditions of Theorem 1:2

(iv) {3d=k0(d); 0¡d¡ 1} is uniformly integrable (3.24)

and

(v) lim
d→ 0

E3d=k0(d) = 1: (3.25)

Proof of Theorem 3.2. The assertions in (3.21)–(3.23) can be proved using exactly
the same arguments as in the Proof of Theorem 1.1. Assertion (3.24) can be proved
using similar arguments to those in (2.7)–(2.10) and the lemma in Section 2. Assertion
(3.25) also follows similarly. Hence the theorem.

4. Extension to a multiple-threshold AR(1) model

The purpose of this section is to construct 'xed size con'dence regions for parame-
ters in a multiple-threshold AR(1) model. Consider a more general TAR model de'ned
in Tong and Lim (1980); also see Chan et al. (1985). More speci'cally, for any integer
l, let −∞= r0¡r1¡ · · · ¡rl =∞ and de'ne

Xi = �kXi−1 + �i(k) if Xi−1 ∈ (rk−1; rk ] (4.1)

for 16k6l. Equivalently, (4.1) may be written as

Xi =
l∑

k=1
[�kXi−1 + �i(k)]I(Xi−1 ∈ (rk−1; rk ]); (4.2)

where I(A) is the indicator function of the set A. In (4.1) and (4.2), the thresholds
are assumed to be known, {�k ; 16k6l} are unknown real parameters which are not
necessarily equal and we assume that for each k; 16k6l; {�i(k)} is a sequence of
i.i.d. random variables with E�1(k) = 0¡E�21(k) = �2k ¡∞. In addition, assume that
{�i(k)} and {�i(j)} are independent sequences for j 	= k and �2k ; 16k6l, are unknown
parameters which are not necessarily equal. Incidentally, our notations in (4.1) are
diHerent from those in Chan et al. (1985) and, further, we assume that the intercept
parameter in (4.1) is zero while Chan et al. (1985) assume it to be nonzero.
As mentioned in the Introduction, Chan et al. (1985) have shown that the pro-

cess {Xi; i¿0} de'ned in (4.1) is ergodic if and only if one of 've conditions on
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{�k ; 16k6l} holds; see Theorem 2:1 of Chan et al. (1985) for details. One of the
've su4cient conditions for ergodicity of {Xi; i¿0} is

�∈�= {(�1; : : : ; �l)′: �1¡ 1; �l ¡ 1 and �1�l ¡ 1}: (4.3)

As in the Introduction, let X0 have as its distribution �(·), the invariant probability
distribution of {Xi} de'ned in (4.1). If �∈� de'ned in (4.3) then by Theorem 2:3
of Chan et al. (1985), the invariant probability distribution of {Xi} has 'nite pth
moment provided E|�1(k)|p ¡∞; 16k6l, for some p¿1. In what follows, let Xi(k)=
XiI(Xi ∈ (rk−1; rk ]) for 16k6l and i¿0, and X (k) = XI(X ∈ (rk−1; rk ]) for X de'ned
above.
Suppose we estimate the parameters �1; : : : ; �l in (4.1) by their least-squares

estimators

�̂k;n =
n∑

i=1
XiXi−1(k)

/
n∑

i=1
X 2i−1(k) (4.4)

for 16k6l. Then, for each 16k6l, the corresponding estimator of �2k is �̂2k;n =
n−1

∑n
i=1(Xi − �̂k;nXi−1(k))2. By Theorem 3.1 of Chan et al. (1985), if �∈� de-

'ned in (4.3), then, for each 16k6l; �̂k;n and �̂2k;n are strongly consistent for �k and
�2k , respectively. Furthermore, by arguments similar to those of Theorem 3.2 of Chan

et al. (1985), we have for �̂n=(�̂1; n; : : : ; �̂l;n)′ that D
1=2
n (�̂n − �) D→ Nl(0; Il) as n→∞,

where Dn = diag(
∑n

i=1 X
2
i−1(1)=�̂

2
1; n; : : : ;

∑2
i=1 X

2
i−1(l)=�̂

2
l;n) and Il is the l × l identity

matrix. This in turn implies that if �∈�, then

(�̂n − �)′Dn(�̂n − �) D→ �2l as n→∞; (4.5)

where �2l is a �2 r.v. with l degrees of freedom. Now, for any d¿ 0, let

R̃n = {z: (z − �̂n)′Dn(z − �̂n)6d2�min(Dn)}; (4.6)

where �min(Dn) = min(
∑n

i=1 X
2
i−1(1)=�̂

2
1; n; : : : ;

∑n
i=1 X

2
i−1(l)=�̂

2
l;n) is the smallest eigen-

value of Dn de'ned above. Then, R̃n de'nes an ellipsoid with length of the major axis
equal to 2d. Moreover, for any �∈ (0; 1) and sample size determined by

m0(d) = smallest integer¿a2=[d2�∗] (4.7)

with �∗=min(EX 2(1)=�21 ; : : : ; EX
2(l)=�2l ), we have from (4.5) that if �∈� de'ned in

(4.3), then

lim
d→ 0

P(�∈ R̃m0(d)) = 1− �; (4.8)

where a2 in (4.7) satis'es P[�2l6a2] = 1 − �. As before, m0(d) cannot be used in
practice. Therefore, we de'ne the following stopping rule:

Sd = inf{n¿m: �min(Dn)¿a2=d2}; (4.9)

where �min(Dn) is as de'ned in (4.6). Then the con'dence ellipsoid R̃Sd has length of
the major axis equal to 2d and we have the following theorem.
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Theorem 4.1. Suppose �∈� de5ned in (4.3). Then; for the stopping rule Sd de5ned
in (4.9) the following hold:

(i) for each d¿ 0; Sd ¡∞ a:s: and Sd →∞ a:s: as d→ 0; (4.10)

(ii) Sd=m0(d)→ 1 a:s: as d→ 0; (4.11)

where m0(d) is as de5ned in (4:7); and

(iii) lim
d→ 0

P[�∈ R̃Sd ] = 1− �: (4.12)

Furthermore; if for each 16k6l; E|�1(k)|2p+� ¡∞ for p¿ 2 and some �¿ 0; then

(iv) {Sd=m0(d); 0¡d¡ 1} is uniformly integrable (4.13)

and

(v) lim
d→ 0

E[Sd=m0(d)] = 1: (4.14)

Proof of Theorem 4.1. The assertions in (4.10)–(4.12) can be proved using
arguments similar to those in the proof of Theorem 1.1. As for (4.13), de'ne
another stopping rule S̃d = inf{n¿m: �̃n¿d−2a2(

∑l
k=1 n

−1 ∑n
i=1 �

2
i (k))}, where �̃n =

min(
∑n

i=1 X
2
i−1(1); : : : ;

∑n
i=1 X

2
i−1(l)). Since �̂k;n is the least-squares estimator of �k ;

16k6l, we have that �̂2k;n6n−1
∑n

i=1 �
2
i (k). From this and the fact that �̂

2
k;n6

∑l
k=1 �̂

2
k;n

we have that Sd6S̃d. Now, proceed as in the proof of Theorem 1.2 using a result anal-
ogous to (2.3) for n−1

∑n
i=1 X

2
i−1(k); 16k6l, and (2.4) to prove (4.13). The assertion

in (4.14) follows from (4.11) and (4.13).

Remark. As in Section 3, for the multiple-TAR(1) model in (4.1), it is also possible to
construct 'xed proportional accuracy con'dence ellipsoids and 'xed width con'dence
intervals for linear combinations of � and establish their asymptotic properties. Such
constructions, however, are very similar to those in Section 3. Hence, we do not
explicitly state the associated results.
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